68 research outputs found

    Medical System Concept of Operations for Mars Exploration Mission-11: Exploration Medical Capability (ExMC) Element - Human Research Program

    Get PDF
    NASAs exploration missions to Mars will have durations of 2-3 years and will take humans farther away from Earth than ever before. This will result in a paradigm shift for mission planning, spacecraft design, human systems integration, and in-flight medical care. Constraints on real-time communication, resupply, and medical evacuation are major architectural drivers. These constraints require medical system development to be tightly integrated with mission and vehicle design to provide crew autonomy and enable mission success. This concept of operations provides a common vision of medical care for developing a medical system for Mars exploration missions. It documents an overview of the stakeholder needs and goals of a medical system and provides examples of the types of activities the system will be used for during the mission. Development of the concept of operations considers mission variables such as distance from Earth, duration of mission, time to definitive medical care, communication protocols between crewmembers and ground support, personnel capabilities and skill sets, medical hardware and software, and medical data management. The information provided in this document informs the ExMC Systems Engineering effort to define the functions to be provided by the medical system. In addition, this concept of operations will inform the subsequent systems engineering process of developing technical requirements, system architectures, interfaces, and verification and validation approaches for the medical system. This document supports the closure of ExMC Gap Med01: We do not have a concept of operations for medical care during exploration missions, corresponding to the ExMC-managed human system risk: Risk of Adverse Health Outcomes & Decrements in Performance due to Inflight Medical Conditions. This document is applicable to the ExMC Element Systems Engineering process and may be used for collaboration within the Human Research Program

    Recommendation for a Medical System Concept of Operations for Gateway Missions

    Get PDF
    NASAs exploration missions to cis-lunar space will establish a permanent gateway to future transport missions to Mars. These missions mandate a significant paradigm change for mission planning, spacecraft design, human systems integration, and in-flight medical care due to constraints on mass, volume, power, resupply, and medical evacuation capability. These constraints require medical system development to be tightly integrated with mission and habitat design to provide a sufficient medical infrastructure and enable mission success. This concept of operations provides a vision of medical care needs that will be used to guide the development of a medical system for the cis-lunar Gateway Habitat. This medical system will serve as the precursor to what is implemented in future exploration missions to Mars. This concept of operations documents an overview of the stakeholder needs and system goals of a medical system and provides examples of the types of activities for which the system will be used during the mission. This concept of operations informs the ExMC systems engineering effort to define the Gateway Habitat Medical System by documenting the medical activities and capabilities relevant to Gateway missions, as identified by the ExMC clinician community. In addition, this concept of operations will inform the subsequent systems engineering process of developing technical requirements, system architectures, interfaces, and verification and validation approaches for the medical system. This document supports the closure of ExMC Gap Med01: We do not have a concept of operations for medical care during exploration missions, corresponding to the ExMC-managed human system risk: Risk of Adverse Health Outcomes & Decrements in Performance due to Inflight Medical Conditions

    Development of Human System Integration at NASA

    Get PDF
    Human Systems Integration seeks to design systems around the capabilities and limitations of the humans which use and interact with the system, ensuring greater efficiency of use, reduced error rates, and less rework in the design, manufacturing and operational deployment of hardware and software. One of the primary goals of HSI is to get the human factors practitioner involved early in the design process. In doing so, the aim is to reduce future budget costs and resources in redesign and training. By the preliminary design phase of a project nearly 80% of the total cost of the project is locked in. Potential design changes recommended by evaluations past this point will have little effect due to lack of funding or a huge cost in terms of resources to make changes. Three key concepts define an effective HSI program. First, systems are comprised of hardware, software, and the human, all of which operate within an environment. Too often, engineers and developers fail to consider the human capacity or requirements as part of the system. This leads to poor task allocation within the system. To promote ideal task allocation, it is critical that the human element be considered early in system development. Poor design, or designs that do not adequately consider the human component, could negatively affect physical or mental performance, as well as, social behavior. Second, successful HSI depends upon integration and collaboration of all the domains that represent acquisition efforts. Too often, these domains exist as independent disciplines due to the location of expertise within the service structure. Proper implementation of HSI through participation would help to integrate these domains and disciplines to leverage and apply their interdependencies to attain an optimal design. Via this process domain interests can be integrated to perform effective HSI through trade-offs and collaboration. This provides a common basis upon which to make knowledgeable decisions. Finally, HSI must be considered early in the requirements development phase of system design and acquisition. This will provide the best opportunity to maximize return on investment (ROI) and system performance. HSI requirements must be developed in conjunction with capability ]based requirements generation through functional. HSI requirements will drive HSI metrics and embed HSI issues within the system design. After a system is designed, implementation of HSI oversights can be very expensive. An HSI program should be included as an integral part of a total system approach to vehicle and habitat development. This would include, but not limited to, workstation design, D&C development, volumetric analysis, training, operations, and human -robotic interaction. HSI is a necessary process for Human Space Flight programs to meet the Agency Human ]System standards and thus mitigate human risks to acceptable levels. NASA has been involved in HSI planning, procedures development, process, and implementation for many years, and has been building several internal and publicly accessible products to facilitate HSI fs inclusion in the NASA Systems Engineering Lifecycle. Some of these products include: NASA STD 3001 Volumes 1 and 2, Human Integration Design Handbook, NASA HSI Implementation Plan, NASA HSI Implementation Plan Templates, NASA HSI Implementation Handbook, and a 2 ]hour short course on HSI delivered as part of the NASA Space and Life Sciences Directorate Academy. These products have been created leveraging industry best practices and lessons learned from other Federal Government agencies

    IMPACT Concept of Operations

    Get PDF
    NASAs future exploration missions mandate a significant paradigm change for mission planning, spacecraft design, human systems integration, and in-flight medical care due to constraints on mass, volume, power, resupply missions, and medical evacuation capabilities. These constraints require further development of the human health and performance system, which includes the medical, task performance, wellness, data, human and other systems necessary to keep the crew healthy and functioning optimally. The human health and performance system will be tightly integrated with mission and habitat design to provide a sufficient human health and performance infrastructure to enable mission success. A suite of systems engineering tools will aid in the decision making process for the development of such a human health and performance system. This Concept of Operations provides a vision for a tool suite to conduct evaluations of human health and performance system options, inform research prioritization, and provide trade study support, based on evidence, risks, and systems engineering principles. The integrated tool suite under development is IMPACT

    Tool for Human-Systems Integration Assessment: HSI Scorecard

    Get PDF
    This paper describes the development and rationale for a human-systems integration (HSI) scorecard that can be used in reviews of vehicle specification and design. This tool can be used to assess whether specific HSI related criteria have been met as part of a project milestone or critical event, such as technical reviews, crew station reviews, mockup evaluations, or even review of major plans or processes. Examples of HSI related criteria include Human Performance Capabilities, Health Management, Human System Interfaces, Anthropometry and Biomechanics, and Natural and Induced Environments. The tool is not intended to evaluate requirements compliance and verification, but to review how well the human related systems have been considered for the specific event and to identify gaps and vulnerabilities from an HSI perspective. The scorecard offers common basis, and criteria for discussions among system managers, evaluators, and design engineers. Furthermore, the scorecard items highlight the main areas of system development that need to be followed during system lifecycle. The ratings provide a repeatable quantitative measure to what has been often seen as only subjective commentary. Thus, the scorecard is anticipated to be a useful HSI tool to communicate review results to the institutional and the project office management

    Students’ Attitudes and Perceptions toward Interprofessional Education

    Get PDF
    Three scales were administered to measure attitudes of graduate students in health professions prior to their participation in an interprofessional education (IPE) pilot program. Overall, results indicated that students’ attitudes toward IPE were generally positive, but there is room for improvement. Additionally, medical students’ attitudes differed from the other disciplines
    • …
    corecore